Karin Grunebaum Cancer Research Foundation Fellow Profile

Muzhou Wu Boston, MA

Ph.D. Assistant Professor, Boston University School of Medicine

Fellow Profile

Current Site Of Practice: Boston University School of Medicine
Hospital Affiliation:
Focus of Research: Melanoma
Fellowship Year: 2020 – 2021
Attended: Boston University

Publications

Re-programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG.

H3K27M mutations resulting in epigenetic dysfunction are frequently observed in diffuse intrinsic pontine glioma (DIPGs), an incurable pediatric cancer. We conduct a CRISPR screen revealing that knockout of KDM1A encoding lysine-specific demethylase 1 (LSD1) sensitizes DIPG cells to histone deacetylase (HDAC) inhibitors. Consistently, Corin, a bifunctional inhibitor of HDACs and LSD1, potently inhibits DIPG growth in vitro and in xenografts. Mechanistically, Corin increases H3K27me3 levels suppressed by H3K27M histones, and simultaneously increases HDAC-targeted H3K27ac and LSD1-targeted H3K4me1 at differentiation-associated genes. Corin treatment induces cell death, cell-cycle arrest, and a cellular differentiation phenotype and drives transcriptional changes correlating with increased survival time in DIPG patients. These data suggest a strategy for treating DIPG by simultaneously inhibiting LSD1 and HDACs.

Cancer Cell 2019 Nov 11;36(5):528-544 PMID: 31631026


MITF Expression Predicts Therapeutic Vulnerability to p300 Inhibition in Human Melanoma.

Histone modifications, largely regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), have been recognized as major regulatory mechanisms governing human diseases including cancer. Despite significant effort and recent advances, the mechanism by which the HAT and transcriptional coactivator p300 mediates tumorigenesis remains unclear. Here, we use a genetic and chemical approach to identify the Microphthalmia-associated transcription factor (MITF) as a critical downstream target of p300 driving human melanoma growth. Direct transcriptional control of MITF by p300-dependent histone acetylation within proximal gene regulatory regions was coupled to cellular proliferation, suggesting a significant growth regulatory axis. Further analysis revealed Forkhead Box M1 (FOXM1) as a key effector of the p300-MITF axis driving cell growth that is selectively activated in human melanomas. Targeted chemical inhibition of p300 acetyltransferase activity using a potent and selective catalytic p300/CBP inhibitor demonstrated significant growth inhibitory effects in melanoma cells expressing high levels of MITF. Collectively, these data confirm the critical role of the p300-MITF-FOXM1 axis in melanoma and support p300 as a promising novel epigenetic therapeutic target in human melanoma.

Cancer Research 2019 May 15;79(10):2649-2661. PMID: 30910803


Emerging Biomarkers in Cutaneous Melanoma

Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. These biomarkers have been used to diagnose melanoma as well as predict progression to advanced disease and response to therapy. The biomarkers take various forms, including protein expression at the level of tissue, genetic mutations of cancer cells, and detection of circulating DNA. First, a brief description is provided about the conventional tissue markers used to stage melanoma, including tumor depth. Next, protein biomarkers, which provide both diagnostic and prognostic information, are described. This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.

Molecular Diagnosis & Therapy. 2018 Apr;22(2):203-218. PMID: 29411301


Targeting the CoREST Complex with Dual Histone Deacetylase and Demethylase Inhibitors.

Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.

Nature Communication. 2018 Jan 4;9(1):53 PMID: 29302039