Karin Grunebaum Cancer Research Foundation Fellow Profile

Rachel Flynn Boston, MA

Ph.D; Assistant Professor, Pharmacology and Medicine, Boston University School of Medicine

Fellow Profile

Current Site Of Practice:
Hospital Affiliation: Boston Medical Center
Focus of Research:
Fellowship Year: 2014 – 2016
Attended: Boston University

Publications

Alternative Lengthening of Telomeres Renders Cancer Cells Hypersensitive to ATR Inhibitors

Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.

Flynn et al., Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 2015. 347 (6219): 273-277

More: http://www.sciencemag.org/content/347/6219/273.full


TERRA and hnRNPA1 Orchestrate an RPA-to-POT1 Switch on Telomeric Single-Stranded DNA

Maintenance of telomeres requires both DNA replication and telomere ‘capping’ by shelterin. These two processes employ two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3- related (ATR) checkpoint kinase at telomeres1, 2, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to efficiently prevent RPA binding to telomeric ssDNA. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat- containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres3. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the reaccumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA, and POT1 act in concert to displace RPA from telomeric ssDNA following DNA replication, and promote telomere capping to preserve genomic integrity .

Nature. 2011 Mar 24;471(7339):532-6

More: http://www.nature.com/nature/journal/v471/n7339/full/nature09772.html